Pilot-Scale Research at NETL on Mercury Measurement and Control

A. Karash, R.A. Hargis, W.J. O'Dowd

NETL

Mercury Control Technology R&D Program

Review Meeting

July 15, 2004

Project Objectives

- Conduct testing to assess the Hg removal performance of activated carbon and novel sorbents for a range of coals and blends
- Evaluate methods for measurement of mercury concentration and speciation
- Provide for testing of novel Hg removal methods (e.g. Thief, GP-254)
- Use test data for model development and validation

500 lb/hr Combustor

Hg Speciation-PRB Coal w/o Sorbent Injection

PRB coal from Pleasant Prairie Power Plant

- Pleasant Prairie Power Plant–84.5% elemental Hg9.8% oxidized Hg
 - 5.7% particulate Hg
- NETL 500lb/hr unit (N=34) 79.2% elemental Hg20.8% oxidized Hg

Baghouse Hg Removal Efficiency - PRB Coal

In-Duct Hg Removal Performance of Norit Darco FGD

Baghouse Inlet Sampling Configuration

Spray Injection Duct

Spray Injection Duct Sampling Location

Typical Hg Sampling Day

In-Duct Hg Removal Efficiency – PRB Coal

In-Duct Hg Removal – Short Residence Time

Impact of Coal Blending on Hg Removal

Impact of Blending on Hg Speciation / HCl

EPA method 26A – HCI

- -PRB 1.4 2.4 ppmv
- -90/10 blend 5.7 7.4 ppmv

Hg speciation Ontario-Hydro

- -PRB 20.8% Hg²⁺
- -90/10 blend 86.5% Hg²⁺
- -80/20 blend 91% Hg²⁺

LOI

- -PRB 0.5% (0.45-0.59)
- $-90/10\ 0.6\%\ (0.51-0.76)$
- $-80/20\ 0.4\%\ (0.30-0.52)$

Thief Process

- An alternative technique to activated carbon injection for Hg removal
- Process involves extracting partially combusted coal from the combustor and reinjecting downstream of the air preheater
- Lower cost than activated carbon sorbents
- Patent No. 6,521,012 issued February 18, 2003
- Current interest for commercial development

Mercury Removal Results - Darco FGD vs. Thief Sorbent

Baghouse 270°F

Sorbent Duct Residence Time 2.5 sec

Conclusions

- 500 lb/hr pilot combustor baseline speciation and activated carbon removal efficiency are very similar to full-scale testing results
- Higher Hg removals obtained with PRB coal by increasing sorbent residence time above 0.5 seconds
- Impact of residence time on in-duct removal efficiency greater at higher temperatures

Conclusions

- In-house novel process (Thief) shows comparable removals to activated carbon at lower cost
- Initial results of blending indicate higher Hg removals from addition of small percentage of bituminous coal

Work in Progress

- Complete testing bituminous/PRB coal blends
- Thief process
- Hg control for lignite coals

Questions?

